
t Capturing Design 
Rationale in Concurrent 
Engineering Teams 

Mark Klein, Boeing Computer Services 

The few existing 
systems that capture 
the rationale behind 
design decisions are 

severely limited. This 
new prototype offers an 
integrated and generic 
framework with much 
broader capabilities. 
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utput from the design of an artifact typically includes blueprints, CAD 
files, manufacturing plans, and other documents that describe the result 
of a long series of deliberations and trade-offs by the members of 

concurrent engineering (CE) teams. The underlying intent and logical support 
(that is, the rationale) for the decisions captured in these documents is usually lost 
or, at best, represented in a scattered collection of paper documents, project and 
persona1 notebook entries, and the recollections of the artifact’s designers. This 
information can be very difficult to come by, and its representation is such that 
computers can provide little support for managing and utilizing it. 

Intensified global competition and increasingly complex artifacts are making it 
more critical to capture the design rationale in a highly usable form. The potential 
benefits are manifold. An explicitly represented rationale can help individual 
designers clarify their thinking, and let all team members critique and augment the 
reasoning behind decisions. I~5 Rationale capture helps identify design changes as 
well as the causes and potential resolutions of conflicts between designers.6 It 
documents design decisions for new team members, new designers, and artifact 
users.’ Existing designs that address similar requirements can be retrieved, under- 
stood, and modified to meet current needs. Perhaps more importantly, subsequent 
CE teams can use the rationale in their design activities. 

To achieve these benefits, however. significant challenges must be met. The 
representation must allow designers to express their design reasoning in a natural 
way; at the same time, it must be forma1 enough to support useful computational 
services. Since CE teams include multiple participants working on overlapping 
aspects of the design, the representation must support concurrent editing. In 
addition, the process of describing rationale should impose the minimum possible 
overhead on the design process. 

Most existing rationale-capture approaches support only individual users and 
are thus not suited to team contexts (though Yakemovic and Conklin’ and Lee 
and La? describe some exceptions). More importantly. they capture the rationale 
for decision-making in general, but not for design decisions in particular. They 
simply add yet another document to the set produced by existing design tools. as 
shown in Figure 1. 
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Figure 1. Rationale captured as a distinct document. 
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Underlying the DRCS rationale language is a model of hydraulic systems can be viewed as collections of pipe, 
how designers think. Rationale is essentially a record of switch, tank, and pump modules linked via hydraulic con- 
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Figure 2. Rationale as decision interdependencies. 
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the reasoning process an individual used to reach certain 
conclusions. Hence, a description language expressed in 
terms that accurately mirror the individual’s reasoning pro- 
cess will be easier to use. A rationale language for the 
medical domain, for example, would be much less useful if 
it did not include terms like “hypothesis,” “evidence,” 
“symptom,” and so on, since these are entities used in 
medical reasoning. 

nections (for example, threaded pipe). 
In the DRCS model, artifact descriptions are refined using 

an iterative least-commitment synthesize-and-evaluate pro- 
cess. An artifact description starts as one or more abstract 
modules representing the desired artifact (for example, “air- 
plane, ” “computer,” or “software application”) with specifica- 
tions represented as desired values on module attributes 
(for example, “passenger capacity should be > 350”). This 
is refined into a more detailed description by constraining 
the value of module attributes, connecting module interfac- 
es (to represent module interactions), decomposing mod- 
ules into submodules, and specializing modules by refining 
their class (Figure B). 

Central to a design reasoning model is, of course, how 
the design itself is represented and refined. This represen- 
tation includes both the physical artifact produced and the 
plans (that is, temporal artifacts) followed to define and ac- 
tually produce it. In DRCS, physical artifacts are viewed as 
collections of modules, which can represent entire sys- 
tems, subsystems, or their components. As shown in Fig- 
ure A, each module has its own characteristic attributes, 
whose interfaces (which have their own attributes) have a 
given type of connection. The resources that a module 
uses, such as cost and weight, are 
represented using a special class of 
attribute. 

A computer, for example, can be de- 
scribed as a set of VLSI chip modules 
with attributes describing their func- 
tionality, power consumption, and so 
on. The connections between module 
interfaces (pins) are realized as (elec- 
trical) deposited wires. At another lev- 
el, we can view an entire board as a 
module connected directly to the bus 
and indirectly to other boards. The in- 
terfaces and connections at this level 

If we were designing an airplane, for example, we might 
decompose the top-level “airplane” module into wing, tail, 
and body section modules as well as electrical, hydraulic, 
and mechanical subsystem modules. Interactions between 
modules (for example, physically connected components) 

describe the data and control proto- Figure A. Design description 
cols between these systems. Similarly, scheme. 

are represented as connections be- 
tween module interfaces. 

Plans are viewed as (perhaps partial- 
ly) temporally ordered collections of 
tasks (Figure C). The tasks include as- 
sociated attribute constraints. An arti- 
fact production plan would thus be rep- 
resented as a sequence of tasks 
corresponding to operations such as 
machining, inspection, and the like. Ev- 
ery task includes one or more primitive 
actions that actually implement the 
task. 

Plans, like artifacts, are defined in an 
iterative least-commitment manner. The 
essential difference is that the basic 
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Such approaches have limited expres- 
siveness and therefore limited compu- 
tational usefulness. The corresponding 
rationale-capture tools provide spotty 
capture of design rationale and may 
generate descriptions that are inconsis- 
tent with the design descriptions. De- 
signers can waste their time on issues 
that later prove unimportant, because 
current rationale-capture tools do not 
let them focus on issues revealed by 
actual inspection of the evolving design 
description.x 

Overcoming these limitationsrequires 
systems that let CE team members con- 
veniently describe the dependencies 
between the decisions captured by ex- 
isting design tools. Figure 2 illustrates 

this idea. It shows. for example, that the 
rationale for a product geometry deci- 
sion consists of the requirements it at- 
tempts to satisfy, the time limits for 
design dictated by the schedule, and the 
other geometry decisions it logically de- 
pends on. Similarly, a manufacturing- 
plan decision is justified in terms of 
supporting decisions that involve, for 
example, project schedule and product 
geometry. 

While systems that integrate design 
and rationale representations do exist 
(see Fischer et al.8), their design repre- 
sentations are highly domain specific 
(for example, kitchen design) and do 
not easily generalize to other domains. 
The fundamental challenge, then. is to 

providean integratedandgenericframe- 
work for capturing rationale in team 
contexts. 

DRCS is a design rationale cap- 
ture system that meets this challenge. 
Its underlying rationale language is 
based both on previous work in 
decision-rationale capture and on a 
generic model of design reasoning 
(see the sidebar “Design reasoning 
model”). The language is designed 
to capture all important aspects of 
design decisions and their inter- 
relationships in a natural way. DRCS 
itself explores how to enhance 
design systems so that they will sup- 
port collaborative editing of designs 
and their rationale. 

entity is a task rather than a module, and tasks are tempo- 
rally ordered rather than connected via interfaces. For 
both physical and temporal artifacts, DRCS provides a 
constraint language that allows indefinite descriptions and 
thus least-commitment design. A constraint language is a 
common approach to supporting conflict avoidance and 
early conflict detection.‘,2 

In parallel with the iterative refinement of the design de- 
scription, the design is evaluated with respect to how well 
it achieves the specifications. Based on this analysis, we 
may choose to select one design option over another or to 
modify a given option so that it addresses an identified de- 
ficiency. The stages of specification identification, design 
option definition, evaluation, and selection/modification 
can be interleaved arbitrarily throughout the design pro- 
cess. 

In addition to reasoning about the design itself (that is, 
reasoning at the domain level), designers also reason at 
the metalevel about the process they use to define the de- 
sign.’ A designer may have a plan for how to create the 
design. The plan might include tasks such as “collect re- 
quirements,” “develop options,” and “perform trade study.” 
If several design options are available, a designer may re- 
flect on which option to select. If a conflict between two or 
more design goals and actions occurs, the designer must 
resolve the conflict. The design-reasoning process is gen- 
erally goal driven, in the sense that actions are taken as 
part of strategies intended to achieve goals such as meet- 
ing a specification, refining a design option, making a con- 
trol choice, or resolving a design conflict. 

This generic model of design reasoning is based on 
classical systems engineering as well as Al models of arti- 
fact planning’ and design.2J These models have been ap- 
plied successfully to a wide variety of domains including 
electrical, electronic, hydraulic, and mechanical systems, 
as well as software. 
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Figure B. Design refinement process. 

Figure C. A plan description. 
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Figure 3. Artifact synthesis entities and relationships. 
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language 

The DRCS rationale language uses a 
vocabulary of assertions to capture de- 
sign reasoning. The assertions consist 
of entities such as modules, tasks, spec- 
ifications, and versions, as well as claims 
about these entities. 

Claims come in two main types. A 
predefined vocabulary of relation claims 
describes relationships between asser- 
tions. Any claim can serve as part of the 
rationale for another claim. Hence, we 
can make claims about the design (for 
example, module-l has-submodule mod- 
ule-2), claims describing the rationale 
for design decisions (for example, val- 
ue-l is-derived-from procedure-l). 
claims concerning why we should be- 
lieve this rationale (or not), and so on 
recursively. There is also an all-purpose 
text claim for capturing information not 
otherwise expressible. 

The net result of describing designs 
and rationale in this way is a graph of 
entity- and text-claim instancesconnect- 
ed by relational claims. The following 
discussion of the vocabulary of claims 
and entities that make up the DRCS 
rationale language divides the language 
into five components. 

Synthesis. This language component 
captures the actions used to define arti- 
facts and their plans. Figure 3 shows the 
language entities relevant to artifacts. 
(In this and the following figures, prim- 
itive language entities appear in plain 
font, while relation claims appear as 
directed arcs with italic labels. The lat- 
ter signify that the given relationship 
can hold between the entities at the arc 
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has-subtask 
has-temporal-relationship 

is-of-type 
A 

Assertion+ has-action -Task f has-plan - Module 

has-attribute 

+ 
Attribute - has-value *Constraint 

Figure 4. Plan synthesis entities and relationships. 

source and target. Entities with the “is- have submodules or specialization! 
of-type” relation have an associated type Attributes can have values, expressed 
taxonomy that a user can select from.) using a constraint language. (Constraint 

The basic entities for artifact descrip- languages expressindefinite descriptions 
tion include modules, attributes. inter- and have been used extensively in nu- 
faces, and connections. Modules can merous design and planning systemsY) 

Examples of DRCS in use 

Imagine some designers working on the preliminary design for a new airplane. 
Figure D shows some of the initial specifications and commitments: The final 
airplane will cost less than $10 million, have a turning radius of less than 180 
feet, and so on. It will be made of either aluminum or graphite, have a passen- 
ger capacity that is a given function of its length, and consist of interconnected 

Airplane 
k 
has-attribute + Cost - has-specification + (4 O,OOO,OOO dollars) 
w---. 
has-attribute --+ Paint - has-specification *(or blue red) 
II\ \\\ \ 
has-attribute 

!\L-&ibute 

--+w T$zig - has-specification -(cl80 feet) 

iL\.\,tt>b-+ Material - has-value + (or aluminum graphite) 

I\\ \ ---+ Length 
has-attribute 

i&;mok cawiv 
Passenger - has-value + (* (the length of airplane) 3) 

\\Ll -’ 

has-r- 

Wing has Interface *wing mount +----. 
is-connected-to 

Body - has-interface + body mount +---’ 
has-production-plan 

L wp,,, - - ” has attnbute + Uses resource <time> 
I 

\ I 
has-subtask has-subtask has-subtask has-specification 

i i t JI 
Acquire Build Assemble (~3 months) 

outsource parts 
components cokes-before 

comes-before -2 

Figure D. Example of initial design specs and commitments. 
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The DRCS constraint lan- 
guage provides a wide range 
of constructs including abso- 
lute constraints such as ine- 

is-of-type has-subspecification 
has-importance 

is-more-important-than 
is-more-important-than 

has-importance 
has-subattribute 

qualities, ranges, and sets as 
well as relational constraints 
such as Boolean and mathe- 
matical equations. 

is-of-type 

Figure 4 illustrates the cap- 
ture of plan descriptions. The 
basic entities here are tasks. i 
Plans to produce an artifact 
are related to the artifact’s 

Figure 5. Evaluation entities and relationships. 

- Version 

top-level module via a “has- 
plan” claim. Every plan is rep- 
resented as the hierarchical 

include time, weight, mon- 
ey, tools, people, and so on. 

Evaluation. The evalua- 
tion component of the DRCS 
rationale language captures 
not only design specifications 
but also how well they have 
been achieved. Figure 5 il- 
lustrates the evaluation en- 
tities and relationships. De- 
sign and plan specifications 
are defined as desired val- 
ues for design and plan at- 
tributes. Attributes and spec- 
ifications can have different 

decomposition of a top-level task into claims. Task actions can be any asser- types, priorities, and subsumption rela- 
temporally ordered subtasks with asso- tion. Plans can have priorities. tionships. Attributes and specifications 
ciated primitive actions. The DRCS For both artifacts and plans, an im- can have types. Specification types in- 
language captures this decomposition portant kind of attribute is the “uses- cludeobjectives,requirements, andpref- 
using “has-subtask,” “has-action,” and resource” attribute. Defining this re- erences. How critical these elements 
“has-temporal-relationship” (for exam- quires specifying the type of resource as are differs from one specification type 
ple, “comes-before” or “comes-after”) well as the amount used. Resources can to another, and thus by implication, so 

wing and body submodules. The manu- 
facturing process should take no more 
than 3 months per plane and consist of 
partially ordered subtasks including 
“acquire outsource components,” etc. 

As the design process continues, the 
designers begin to address achieving 
the turning-radius specification. One 
possible strategy is to use folding 
wings. Figure E illustrates how the lan- 
guage captures this reasoning: The de- 
signers raised the decision problem of 
figuring out how to achieve the turning- 
radius specification, proposed a strate- 
gy to do so, and took actions (in this 

Airolane 
has-attribute + ‘,u6z,“g - has-specification -+ (4 80 feet) 

I 
raises-issue 

v 
Achieved by? 

I 
has-strategy 

has-submodule v 

L Wing 

Use folding wings 

has-specialization - 
action-of 

v 
Folding-type wing 

case, specializing the wing module) 1 

with the intent of implementing this Figure E. Rationale for folding wing tips. 

strategy. 
The specification concerning the air- 

plane turning radius, however, turns out to be controversial. 
Figure F captures the line of pursuant argumentation: A de- 
signer asks what the turning radius of existing big planes is, 
then claims that the new airplane need do no better. Should 
the new airplane’s original specification be replaced by a less 
stringent one, the designers can use the rationale graph to 
determine what derived decisions, such as the choice of fold- 
ing wings, potentially need to be reconsidered. 

DRCS can also represent the rationale for metalevel deci- 
sion making, for example, deciding to try a particular option 
at a choice point or to resolve a conflict in a particular way. In 
both these cases, an assertion representing the decision 
problem (for example, resolved-by for conflicts or is-the-best- 
option-for for choice points) is linked via a strategy to the ac- 
tions (for example, creating a new design option for conflicts, 
or choosing an existing one for choice points) that address 
the decision problem. 
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Airplane turning radius (cl80 feet 

has-answer 
denies 

About 200 feet. 

supports 

We don’t need to do better than 200 feet. 

Figure F. Argumentation concerning the turning- 
radius specification. 
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does our willingness to relax 
them. We can say that a de- 
sign version achieves a given 
specification; precisely how is 
described in the rationale for 
that claim (see the discussion 
under “Versions”). 

Intent. When taking some 
kind of design action, a de- 
signer is usually pursuing a Figure 6. Intent model entities and relationships. 
strategy to find an answer for 
some problem; that is, the 
designer has some intent when 
taking that action. 

Figure 6 illustrates the in- 
tent model for the DRCS lan- 

Decision problem 
I 

has-option 
is-the-best-option-for 

guage. Any assertion in a de- 
sign description can raise a 
decision problem. There is, in 
fact, a preenumerated set of 
decision problem types-one 
for every relation defined for 
a given assertion type. For ex- 

Figure 7. Versions model entities and relationships. 

ample, there is a decision 
problem for the “has-submod- 
ule” relation on modules suppoi?s 
(where the problem is deter- qualifies 
mining how to decompose denies 

the module), a decision prob- 
presupposes 

lem for the “has-value” rela- 
tion on attributes (where the 
problem is determining what 
the attribute value should 
be), and so on. Some decision 
problems can have greater L 

has-input 

priority than others. The strat- 
egy used to address a decis- 

Figure 8. Argumentation model entities and relationships. 

ion problem is represented as 
a “has-strategy” link to the 
top-level task of a plan. 

Second, DRCS can capture 
design rationale on the basis 
of programmatic concerns. 
For example, it can use links 
between plan resource lim- 
its and design attributes to 
keep the design definition or 
manufacturing process from 

Versions. The versions model, illus- 
trated in Figure 7, captures how the 
designer creates and explores the space 
of design alternatives. The designer cre- 
ates new versions whenever tentative 
decisions are defined and/or alterna- 
tives are explored, that is, whenever 
options are defined for a decision prob- 
lem. Every option for a given decision 
problem is asserted in a different ver- 
sion. The versions storing the options 
can have differing priorities as well as 
statuses. If a given version has the status 
“conflict,” we can indicate which alter- 
nate version resolves that conflict. The 
preferred option for a decision prob- 
lem is represented by an “is-the-best- 
option-for” claim. 

is the argumentation model, illustrated 
in Figure 8. It describes the reasons for 
and against believing claims. The basic 
entities include both relation and text 
claims as well as procedures and ques- 
tions. 

Argumentation.The fifth component 

Claims can support, qualify, deny, or 
presuppose one another. Designers can 
use the “has-result” and “has-input” 
claims to link claims to the procedures 
used to derive them and the inputs to 
those procedures. Procedures can be 
mathematical equations or less struc- 
tured information such as textual refer- 
ence sources, handbooks, catalogs, and 
standard engineering tables. An indi- 
vidual can raise “questions” about the 
validity of a claim and assert that given 
claims answer these questions. Any syn- 
thesis, evaluation, intent, versions, or 
argumentation claim can itself be the 
subject of argumentation claims. 

being too resource intensive. DRCS also 
incorporates a model of intent-some- 
thing absent from most decision ratio- 
nale work. For example, while DRL 
includes a “goal” entity, it provides no 
way to link goals to the strategy for 
achieving them and to the actions that 
implement the strategy. The DRCS in- 
formation-theoretic content is thus sig- 
nificantly higher, but not at the cost of 
being domain specific (as it is, for exam- 
ple, in Janus*). 

Third, DRCS’s explicit semantics in- 
crease the possibilities for computational 
support. Since the problem and specifi- 
cation semantics for decisions are known, 
for example, it is much easier to fetch 
previous design cases that dealt with 
similar challenges. We can more easily 
find the differences and similarities be- 
tween candidate design versions by iden- 
tifying how the designs diverged and 
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Advantages of DRCS 
language. The DRCS de- 
sign rationale language is an 
extension, with substantial 
modification, of previous 
work in decision-rationale 
capture. Its main contribu- 
tion is to integrate the ratio- 
nale language with a generic 
design-description language 
applicable to a wide range 
of design domains. This ap- 
proach offers a number of 
advantages over previous 
work. 

First. the DRCS language 
is more expressive. Generic 
decision-rationale languages 
such as gIBIS’ and DRL* use 
natural-language text to de- 
scribe the requirements, de- 
cision problems, and options. 
By contrast, DRCS uses a 
structured language with ex- 
plicit semantics. It describes 
requirements as a desired 
attribute value and design 
options as interconnected 
modules and tasks; it selects 
decision problems from a 
preenumerated set with 
known semantics. 
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why. Integrated desigmratio- 
nale capture supports conflict 
detection, classification, and 
resolution6 Controversial de- 
sign decisionscan be searched 
by looking for underlying 
claims that include many in- 
stances of support and deni- 
al. Users can determine the 
consequences of withdraw- 
ing a design choice by delet- 
ing all derived decisions 
without independent support; 
they can review the options 
explored for a given problem 
by checking all the has- 
option claims stemming 
from the decision problem, 
and so on. 

. 
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CE team- 
member e 
interface 
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CE team- 
member ++ 
interface 
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Figure 9. DRCS architecture. 

Finally, DRCS is more natural than 
most previous languages for describing 
design rationale. Designers can attach 
the rationale directly to the design as- 
pect it refers to (module decomposi- 
tion, attribute value, etc.), rather than 
to a piece of text. In DRL, specifica- 
tions are represented as subgoals of 
decision problems, and a new copy of 
this subgoal must be created for every 
decision problem affected by the speci- 

fication. DRCS represents specifications 
simply as desired values for module at- 
tributes. 

DRCS 

Current design tools, as noted earli- 
er, do not in general support rationale 
capture as an integrated component of 
their operation, nor do they support 

groups as opposed to indi- 
viduals. DRCS was devel- 
oped to improve understand- 
ing of how existing design 
systems can be augmented 
to address both these pur- 
poses. 

DRCS is currently imple- 
mented in Common Lisp on 
several networked Symbol- 
its workstations. Figure 9 il- 
lustrates its architecture. CE 
team members receive inter- 
faces that let them view the 
design and rationale infor- 
mation on a shared black- 
board. They can also make 
changes on their private 
scratchpads and “publish” 

the scratchpad contents so that the con- 
tents update the blackboard. Users can 
publish their changes as they are made, 
allowing essentially real-time collabo- 
rative editing, or they can choose to 
publish them periodically. 

DRCS provides CE team members 
with a direct-manipulation graphical 
interface, shown in Figure 10. Users can 
create windows that present a subset of 
the design data from many possible per- 

[I FILE WINDOWS SPECIRLE 
I 

Default Mode in NERGE-1 

Cllose Refresh RCllose Refresh 

Close Refresh 

Module airplane in Version MERGE4 

Production Plans 
Has Plan build airplane 

Specializations 

Has Subnodule body 
Has Subnodule wing 

has attribute naterial 

Figure 10. Example of the DRCS interface in use. 
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spectives, each highlighting different 
aspects of the design/rationale descrip- 
tion. For example. one window can dis- 
play the current artifact design as rect- 
angular modules with lines representing 
connections. Another can show PERT 
charts of the ordering of tasks in a given 
plan. Another can graph the argument 
structure affecting a given claim or 
present the current set of versions as a 
lattice, and so on. These windows dy- 
namically update themselves whenever 
the product-data subset they view chang- 
es, so they are continuously up to date. 
In addition to simply displaying prod- 
uct data in some predefined format, 
users can create instances of “analysis” 
windows that present information such 
as pointers to circular or incomplete 
argument structures or to questionable 
decision choices. 

DRCS integrates 
design-decision and 

design-rationale capture 
in a single tool. 

ates an instance of that attribute con- 
nected to the module via a “has-at- 
tribute” claim. 

To connect two module interfaces, 
the user selects the “Make Connection” 
option for one interface and then se- 
lects the interface to connect to. To add 
support for a claim, the “is-supported- 
by” option is selected for that claim and 

The topmost window in the Figure 10 
display contains the menubar. Each item 
in it produces a menu of options when 
selected. The File menu options include 
saving the current state of the user in- 
terface and publishing the user’s pri- 
vate scratchpad. The Windows menu 
supports the creation of new perspec- 
tive windows or the ability to cycle 
through existing ones, while the Special 
menu lets users create analysis windows. 
Other views in Figure 10 are the ver- 
sions graph (lower right), the artifact 
design in one of the versions (upper 
right), a description of one component 
in that design (lower left), and a de- 
scription of the plan used to produce 
that component (upper left). The print- 
ed representation of every entity and 
claim is mouse sensitive: When the point- 
ing device clicks on it, the system dis- 
plays a menu of options that make sense 
in the context of that assertion. 

then either an existing claim is selected 
or a new one is created. DRCS automat- 
ically creates the appropriate “supports” 
relation between these claims. A few 
mouse operations usually describe de- 
sign decisions and their interdependen- 
ties (that is, their rationale), though 
text entry is sometimes required. 

There are two classes of options for 
any assertion: perspective creation and 
editing. Perspective creation options 
generate windows that view the asser- 
tion from a given perspective. When 
clicking on a plan’s top-level task, for 
example, users can create windows that 
view it either as temporally ordered leaf 
tasks or as a task decomposition hierar- 
chy. Editing options let users update 
the design rationale database; for any 
assertion, the menu will include a list of 
all the types of claims possible to make 
about that assertion. To add an attribute 
to a module, for example, the user clicks 
on the module and selects the “Define 
Attribute” option. A prompt then asks 
for an attribute name, and DRCS cre- 

The DRCS interface builds upon ra- 
tionale-capture systems such as gIBIS,l 
Sibyl,? and Janus8 and to a lesser extent 
on hypertext systems without an explic- 
it rationale language (for example, see 
Uejio’O and Lakin et al.“). The key dif- 
ference between DRCS and these sys- 
tems is that DRCS integrates in a single 
tool a general approach to both design- 
decision and design-rationale capture. 
Users thus have no need to switch tools 
when describing the design as opposed 
to its rationale. They can attach ratio- 
nale directly to the design claims of 
interest and focus their efforts on de- 
scribing rationale that the evolving de- 
sign description reveals as critical. 

Future directions 

DRCS was developed to explore how 
current rationale-capture approaches 
can be extended to provide more effec- 
tive support for the capture of comput- 
er-interpretable rationale from multi- 
function CE design teams. It has been 
used successfully to record rationale for 
a variety of simple new designs and to 
re-represent information from more 
complex existing designs. The resulting 
information has supported computation- 
al services that generic decision-ratio- 
nale representations could not support. 

This experience shows that the DRCS 
approach is valid. 

There are, moreover, rich possibili- 
ties for future growth. The rationale- 
capture language must be augmented to 
capture geometric information (by in- 
corporating a feature-based geometric 
representation) and tentative or “fuzzy” 
argumentation.2 In addition, better 
methods must be developed to allow 
effective display and use of anticipated 
large and highly complex product data/ 
rationale networks. 

Rationale-capture systems impose 
significant overhead on the design pro- 
cess. This is exacerbated by the fact that 
the people who benefit from rationale 
capture often are not those who are 
asked to perform it. The challenge is to 
make the cost/benefit ratio attractive to 
the individuals asked to enter rationale. 

While the point-and-click interface 
metaphor reduces DRCS’s overhead, 
we need to do more. In addition to 
maximizing its current services to users, 
DRCS may add support for rationale 
capture via English text. This is less 
daunting than one might imagine: Prob- 
ably only a limited subset of English is 
needed to express design rationale, and 
the current design context can help re- 
duce the semantic ambiguity of natural- 
language text. 

D RCS is currently a stand-alone 
research prototype. To have 
significant impact, the technol- 

ogy must be added to the decision-cap- 
ture tools actually used by CE design 
teams. This requires advances on sever- 
al fronts. Current product data and/or 
interapplication link standards must be 
augmented to include a design ratio- 
nale representation. This will involve 
both adding rationale-description prim- 
itives to current standards and defining 
the mapping between the existing and 
DRCSproduct-datarepresentations. CE 
team-member interfaces must be up- 
dated to let users collaboratively view, 
edit, and link different kinds of shared 
product data. 

One approach is to enhance existing 
design tools so that they can provide 
additional product-data display formats 
(for example, the addition of manufac- 
turing-data displays to a CAD tool) and 
can also allow linkages among this data. 
Another approach is to provide support 
at the operating-system level, in effect 
extending the cut-and-paste metaphor 
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used in the Macintosh operating system 5. .I. Mostow and M. Barley, “Automated 
to support creation of cross-application Reuse of Design Plans,” Proc. Int’l Conf. 

rationale links. Both approaches are Eng. Design, IEEE, Piscataway, N.J., 

currently under evaluation for viability 
1987, pp. 632-647. 

in Boeing’s computing context. n 6. M. Klein, “Supporting Conflict Resolu- 
tion in Cooperative Design Systems,” 
IEEE Trans. Systems, Man, and Cyber- 
netics. Vol. 21, No. 6,Dec. 1991. pp. 1,379. 
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